

SOLID SHAPES

Solid shapes and formula for solid shapes! How many of us shudder thinking about it? But what if you could not only understand it but use it effectively? Yes, that is what Edulyte aims to do. Solids shapes or solids in maths can give us a tough time but not if you find out how to handle cube, cuboid, and the rest of them.

Read more

Q1: What is the volume of a cone with radius 'r' and height 'h'?

A: V = πr² B: V = 1/3πr²h C: V = I × w × h D: V = πr²h

Q2: What is the volume of a triangular pyramid?

A: V = (1/3× Base Area ×Height) B: V= (1/2× Base Area × Height) C: V = (3/4× Base Area × Height) D: It varies

Q3: What is the formula for the volume of a cylinder?

A: V = I × w × h B: V = πr^2h C: V = 1/3πr^2h D: V = 4/3πr^3

Q4: What is the formula for calculating the volume of a cube?

A: V=4s2 B: V=s2 C: V=6s3 D: V=s3

Q5: Which solid shape does not have any vertices?

A: Sphere

- **B:** Cylinder
- C: Cube
- D: Cone

Q6: What is the formula for the surface area of a cylinder?

A: SA=2πr2(power) B: SA=πr2(power)+πrh C: SA=πr2(power) D: SA=πr r2(power)+h2(power) root

Q7: A rectangular box has dimensions of 4 cm by 6 cm by 10 cm. What is the total surface area of the box?

A: 248 cm³ B: 40 cm³ C: 60 cm³ D: 20 cm³

Q8: What is the surface area of a cone with a radius of 6 cm and a slant height of 10 cm? (Use π =3.14)

A: SA= 301.5cm2 B: SA= 250.2cm2 C: SA=189.4cm2 D: None of the above

Q9: A cylindrical tank has a radius of 2 meters and a height of 6 meters. What is the volume of the tank? (Use ' \approx 3.14 π \approx 3.14)

A: 24m3 B: 25m3 C: 75m3 D: 150m3

Q10: If the side length of a cube is 5 cm, what is its total surface area?

A: 50cm2

B: 100cm2

C: 125cm2

D: 150cm2

Answers

- **Q1:** B V = $1/3\pi r^2h$
- Q2: A V = (1/3× Base Area ×Height)
- **Q3:** B V = πr^2h
- **Q4:** D V=s3
- Q5: A Sphere
- **Q6:** B SA= π r2(power)+ π rh
- **Q7:** A 248 cm³
- **Q8:** A SA= 301.5cm2
- **Q9:** C 75m3
- Q10: D 150cm2